Energy relaxation dynamics and universal scaling laws in organic light emitting diodes

نویسندگان

  • Eric R. Bittner
  • Stoyan Karabunarliev
چکیده

Electron-hole (e-h) capture in luminescent conjugated polymers (LCPs) is modeled by the dissipative dynamics of a multilevel electronic system coupled to a phonon bath. Electroinjected e-h pairs are simulated by a mixed quantum state, which relaxes via phonon-driven internal conversions to low-lying charge-transfer (CT) and excitonic (XT) states. The underlying two-band polymer model reflects PPV and spans monoexcited configuration interaction singlets (S) and triplets (T), coupled to Franck-Condon active C=C stretches and ring-torsions. Focusing entirely upon long PPV chains, we consider the recombination kinetics of an initially separated CT pair. Our model calculations indicated that S and T recombination proceeds according to a branched, two-step mechanism dictated by near e-h symmetry. The initial relaxation occurs rapidly with nearly half of the population going into excitons (SXT or TXT ), while the remaining portion remains locked in metastable CT states. While formation rates of SCT and TCT are nearly equal, SXT is formed about twice as fast TXT in concurrence with experimental observations of these systems. Furthermore, breaking e-h symmetry suppresses the XT to CT branching ratio for triplets and opens a slow CT→ XT conversion channel exclusively for singlets due to dipole-dipole interactions between geminate and non-geminate configurations. Finally, our calculations yield a remarkable linear relation between chain length and singlet/triplet branching ratio which can be explained in terms of the binding energies of the respective final excitonic states and the scaling of singlet-triplet energy gap with chain length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an en...

متن کامل

Effects of double layer AlN buffer layers on properties of Si-doped AlxGa1−xN for improved performance of deep ultraviolet light emitting diodes

Related Articles Influence of exciton lifetime on charge carrier dynamics in an organic heterostructure Appl. Phys. Lett. 102, 113304 (2013) Influence of exciton lifetime on charge carrier dynamics in an organic heterostructure APL: Org. Electron. Photonics 6, 52 (2013) Influence of internal absorption and interference on the optical efficiency of thin-film GaN-InGaN light-emitting diodes Appl....

متن کامل

Recent Advances in Conjugated Polymers for Light Emitting Devices

A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as...

متن کامل

Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials

Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003